- Path:
-
Local quasi-isometries and tangent cones of definable germs
Files
Access is only available for authenticated users.
Periodical
- Title:
- Advances in geometry
- Publication:
-
Berlin [u.a.]: de Gruyter, 2001 -
- Scope:
- Online-Ressource
- Note:
- Gesehen am 26.06.20
- ISSN:
- 1615-7168
- ZDB-ID:
- 2043066-8
- Keywords:
- Geometrie ; Zeitschrift
- Classification:
- Mathematik
- DDC Group:
- 500 Naturwissenschaften
- Copyright:
- Rights reserved
- Accessibility:
- Eingeschränkter Zugang mit Nutzungsbeschränkungen
- Collection:
- Mathematik
Article
- Title:
- Local quasi-isometries and tangent cones of definable germs
- Publication:
-
Berlin [u.a.]: de Gruyter, 2024
- Language:
- English
- Scope:
- Online-Ressource
- Note:
- Kein Open Access
- Archivierung/Langzeitarchivierung gewährleistet
- Keywords:
- Definable germ ; tangent cone ; quasi-isometry ; Primary 14B05 ; Secondary 32C05
- Classification:
- Mathematik
- Sonstiges
- Collection:
- Mathematik
- Sonstiges
- Copyright:
- Rights reserved
- Accessibility:
- Eingeschränkter Zugang mit Nutzungsbeschränkungen
- Information:
-
Abstract: In this paper, we introduce the notion of local quasi-isometry for metric germs and prove that two definable germs are quasi-isometric if and only if their tangent cones are bi-Lipschitz homeomorphic. Since bi-Lipschitz equivalence is a particular case of local quasi-isometric equivalence, we obtain Sampaio’s tangent cone theorem as a corollary. As an application, we provide a different proof of the theorem by Fernandes-Sampaio, which states that the tangent cone of a Lipschitz normally embedded germ is also Lipschitz normally embedded.