- Path:
-
Improving NHL draft outcome predictions using scouting reports
Files
Access is only available for authenticated users.
Periodical
- Title:
- Journal of quantitative analysis in sports
- Publication:
-
Berlin Boston, Mass.: De Gruyter, 2005 -
- Scope:
- Online-Ressource
- Note:
- Gesehen am 06.02.12
- C!URL-Ä(06-02-12)
- ISSN:
- 1559-0410
- ZDB-ID:
- 2233187-6
- Keywords:
- Zeitschrift
- Classification:
- Sport
- Copyright:
- Rights reserved
- Accessibility:
- Eingeschränkter Zugang mit Nutzungsbeschränkungen
- Collection:
- Sport
Article
- Title:
- Improving NHL draft outcome predictions using scouting reports
- Publication:
-
Berlin Boston, Mass.: De Gruyter, 2024
- Language:
- English
- Scope:
- Online-Ressource
- Note:
- Kein Open Access
- Archivierung/Langzeitarchivierung gewährleistet
- Keywords:
- machine learning ; LLM ; hockey
- Classification:
- Sport
- Collection:
- Sport
- Copyright:
- Rights reserved
- Accessibility:
- Eingeschränkter Zugang mit Nutzungsbeschränkungen
- Information:
-
Abstract: We leverage Large Language Models (LLMs) to extract information from scouting report texts and improve predictions of National Hockey League (NHL) draft outcomes. In parallel, we derive statistical features based on a player’s on-ice performance leading up to the draft. These two datasets are then combined using ensemble machine learning models. We find that both on-ice statistics and scouting reports have predictive value, however combining them leads to the strongest results.