Path:
Sektor Büro

Full text: Sektor Büro

Stromsparkonzept Heidelberg Bahnstadt
Sektor Büro

Quelle: ssv/motorplan

Stromsparkonzept Heidelberg Bahnstadt
Sektor Büro
Erstellt:	 Ergänzt und aktualisiert:	 im Auftrag von:	 	 Projektleitung:	 Inhaltliche Bearbeitung:	 	 	 	 Konzeptionelle Begleitung:	 	 	 	 Juli 2011 März 2012 Stadt Heidelberg, Amt für Umweltschutz, Gewerbeaufsicht und Energie Dipl.-Phys. Rosemarie Hellmann Dipl.-Phys. Rosemarie Hellmann Dipl.-Phys. Ursula Rath (CONSISTE) Prof. Gernot Brose Dipl.-Phys. Matthias Laidig Dipl.-Ing. Alexander Krohn Dipl.-Ing. (FH) Robert Persch Dipl.-Phys. Ralf Bermich Dr. Hans-Wolf Zirkwitz

Inhaltsverzeichnis

Ziele im Neubaugebiet Bahnstadt	 1	 Kosteneinsparungen durch Optimierung – Bürogebäude –	

7 8

Bürogebäude	 2	 3	 4	 5	 6	 Stromverbrauch von Bürogebäuden	 Allgemeinstrom	 Aufzüge	 Umwälzpumpen	 Lüftung und Klimatisierung	 6.1	 6.2	 6.3	 6.4	 7	 Schlanke Bürogebäude	 Erhöhte Anforderungen an Lüftung	 Erhöhte Anforderungen an Kühlung	 Kennwerte Lüftung und Klimatisierung in Bürogebäuden	

10 10 11 12 12 13 14 15 17 18 18 18 21 22 22 22 23 25 25 26 27 28

Beleuchtung	 7.1	 7.2	 7.3	 Allgemeinbeleuchtung	 Beleuchtung am Arbeitsplatz	 Kennwerte Bürobeleuchtung	

8	

Informations- und Kommunikationstechnik	 8.1	 8.2	 8.3	 Rechenzentren und Serverräume	 Informations- und Kommunikationstechnik dezentral	 Kennwerte Informations- und Kommunikationstechnik	

9	 10	 11	 12	

Sonstige Geräte	 „Best Practice“-Beispiel	 Übersicht Kennwerte	 Zusammenfassung und Empfehlungen	

Literaturverzeichnis	

33

Stromsparkonzept Sektor Büro – Seite 4

Abbildungsverzeichnis
Abb. 1	 Abb. 2	 	 Abb. 3	 Abb. 4	 	 Abb. 5	 	 Abb. 6	 	 Abb. 7	 Bürogebäude (Quelle: ebök)	 Anteil der Stromverbraucher in einem Büroraum ohne Klimaanlage (Quelle: ebök nach Schätzung [Gloor])	 Beispiel einer internetbasierten Datenbank	 Typische Primärenergiekennwerte für bestehende, neue und primärenenergetisch optimierte Bürogebäude (aus EnOB Forschungsbereich EnBau) – [BINE I/2007]	 Label Energieeffizienzklasse A+, A und B des Herstellerverbands Raumlufttechnische Geräte e.V. [RLT 01]	 Verteilung des Stromverbrauchs am Arbeitsplatz auf die typischerweise vorkommenden Geräte [PC-Arbeitsplatz]	 „Checkliste Haushaltsgeräte im Büro – das können Sie tun“	 8 9 9 13 16 24 32

Tabellenverzeichnis
Tab. 1	 	 Tab. 2	 	 Tab. 3	 Tab. 4	 Tab. 5	 Tab. 6	 Tab. 7	 Tab. 8	 Tab. 9	 Tab 10	 Tab. 11	 Tab. 12	 Tab. 13	 	 Tab. 14	 Tab. 15	 Spezifischer Stromverbrauch für ein Bürogebäude (bezogen auf NGF beheizt), (Aachen 2002 nach [BINE projektinfo 13/07])	 Spezifischer Stromverbrauch für ein Bürogebäude (bezogen auf NGF beheizt) (Verwaltungszentrum Eberswalde nach [BINE 16/09])	 Behaglichkeitsfeld für Büroräume	 Tabelle A.11 nach DIN EN 13779 – Außenluftvolumenströme je Person	 Tabelle 9 nach DIN EN 13779 Klassifizierung der spezifischen Ventilatorleistung	 Grenz- und Zielwerte für die spezifische elektrische Leistungsaufnahme von Lüftungsgeräten	 Richtwerte für die Kühlleistung nach [LEE 2000]	 Kennwerte Lüftung und Klimatisierung	 Kenndaten verschiedener Leuchtmittel [Allgemeinstrom 09]	 Betriebskostenvergleich zwischen Leuchtstoffröhren und LED [eigene Berechnungen]	 Erforderliche Beleuchtungsstärke bei verschiedenen Sehaufgaben [DIN EN 12464-1]	 Kennwerte nach [LEE 2000] und [Herstellerangaben]	 Vergleich des Strombedarfs von Geräten der Informationstechnik [Herstellerangaben; Stiftung Warentest; 2008]	 Anforderungen an die Leistung von Geräten der Unterhaltungselektronik nach EuP-Richtlinie	 Einsparmöglichkeiten beim Lichtstromverbrauch; nach [Allgemeinstrom 09]	 10 10 13 15 15 16 17 18 18 20 20 22 25 25 31

Stromsparkonzept Sektor Büro – Seite 5

Stromsparkonzept Sektor Büro – Seite 6

Ziele im Neubaugebiet Bahnstadt

Für das Baugebiet Bahnstadt ist der Passivhausstandard verbindlich und flächendeckend eingeführt worden. Um eine möglichst niedrige Primärenergiekennzahl und damit geringe CO2-Emission zu erreichen, soll zudem der Stromeinsatz den technischen Möglichkeiten entsprechend minimiert werden. Daher werden, soweit dies technisch sinnvoll darstellbar ist, im Folgenden diesbezügliche Mindestanforderungen aufgestellt, die bei der Qualitätssicherung durch die Stadt Heidelberg überprüfbar sind. Die Anforderungen werden für die Bereiche 	 	 	 	 Büro, Wohnen, Einzelhandel/Fachmarkt und Labore

konkretisiert und dargestellt. Für die genannten Bereiche werden nur die jeweils hierfür relevanten Aussagen aufgeführt. Wo dies sinnvoll möglich ist, werden Zielwerte für die spezifisch pro Quadratmeter zu installierende Leistung oder andere Kennwerte genannt, nach denen ein Gebäude Anforderungen nach einem effizienten Betrieb erfüllen kann. Dies gilt z.B. für die Beleuchtung und teilweise auch Lüftung und Klimatisierung. Wenig sinnvoll hingegen ist dies beispielsweise für Aufzüge oder für Haushaltsgeräte in Teeküchen von Bürogebäuden sowie in Haushalten. Hier gibt es andere Effizienzkriterien, die dann in den entsprechenden Kapiteln benannt und erläutert sind. Haupt-Kriterium zur Erreichung des Passivhausstandards für Wohn- und Nichtwohngebäude ist die Einhaltung des Primärenergiekennwerts von 120 kWh/m2a. Dieser Kennwert darf in der Gesamtbilanz für Wärme und Strom nicht überschritten werden. Die Gesamtbilanz für Wohngebäude umfasst die Energieanwendungen für die Haustechnik mit Hilfsstrom und den Haushaltsstrom, die Gesamtbilanz für Nichtwohngebäude alle nutzungsbedingten Energieanwendungen für Heizung, Lüftung, Kühlung, Trinkwarmwasser, Hilfsstrom und nutzungsbedingte elektrische Anwendungen wie Beleuchtung, Arbeitshilfen und Küchen in Nichtwohngebäuden. Je besser die energetische Qualität der Gebäudehülle, desto bedeutender wird das Stromkonzept für die Gesamtbilanz. Die Ausstattung von Gebäuden mit effizienten Geräten senkt nicht nur direkt den Anteil des Stromverbrauchs an der Gesamtbilanz eines Gebäudes. Sie bedeutet ebenso einen Beitrag zum sommerlichen Wärmeschutz durch die Begrenzung interner Wärmelasten. Dieses Stromsparkonzept soll eine Anleitung dafür sein, mit welchen Komponenten inklusive ihrer jeweiligen Nutzung der Primärenergiekennwert für Passivhausgebäude erreicht werden kann. Es soll versucht werden, eine möglichst einfache Darstellung von Kriterien zu finden, z.B. durch die Formulierung übergeordneter Kennwerte für einzelne Stromanwendungen. Für die verschiedenen Nutzungsbereiche werden „Best Practice“-Beispiele vorgestellt.

Stromsparkonzept Sektor Büro – Seite 7

1	 	

Kosteneinsparung durch Optimierung – Bürogebäude –

Abb. 1	 Bürogebäude (Quelle: ebök)

Die Energiekosten nehmen schon heute einen wichtigen Teil der Betriebskosten eines Gebäudes ein – mit steigender Tendenz. Beim Bau eines Bürogebäudes stehen in erster Linie Architektur, Ausstattung und Arbeitsplatzqualität, verbunden mit der Überlegung, das Gebäude zu kühlen, im Vordergrund. Bauherr oder Investor haben in der Regel das Investitionsvolumen im Blick ohne Berücksichtigung der Betriebskosten über die Lebensdauer eines Gebäudes. Aber gerade hier lohnt sich langfristiges Denken: schließlich wird ein Gebäude 30 bis 40 Jahre oder länger genutzt, die haustechnische Ausstattung etwa 20 Jahre, die Ausstattung an elektrischen und elektronischen Geräten 5 bis 15 Jahre, in denen die Preise für Gas, Öl und Strom steigen. Eine energetische Optimierung führt nicht nur zu geringen Betriebskosten, sondern bietet auch hohen Innenraumkomfort [BINE 13/07]. Energieeffizientes Bauen und Betreiben bedeuten für den Bauherrn eines Gebäudes:
	 Die Offenlegung der späteren Energiekosten liefert von Anfang an eine Information zu den im laufenden

	 	

Betrieb zu erwartenden Betriebskosten und ist zugleich eine wichtige Grundlage für Investitionsentscheidungen bei der Planung des Gebäudes.
	 Durch verbesserte Betriebskosten kann auf lange Sicht eine höhere Sicherheit im Bereich der Vermietbarkeit

	

gewährleistet werden, da niedrigere Betriebskosten auch dauerhaft konkurrenzfähige Mieten bedeuten.
	 Aufeinander abgestimmte technische Systeme sorgen für hohen Komfort im Bereich der Ausstattung und

	

Nutzung.
	 Mit diesem Zeichen von Verantwortungsbewusstsein gegenüber der Umwelt ergibt sich auch ein Imagegewinn

	

gegenüber der Kundschaft.

Stromsparkonzept Sektor Büro – Seite 8

Abb. 2	 Anteil der Stromverbraucher in einem Büroraum ohne Klimaanlage 	 (Quelle: ebök nach Schätzung [Gloor])

Energieeffizienz im Büro
durchschnittliche Ausstattung sparsame Ausstattung

Beleuchtung 35 %

Diverses 4 % Einsparung 41 %

Bürogeräte 25 %

Beleuchtung 20% Lüftungsanlage 20 % Bürogeräte 41 % Diverses 4 % Lüftungsanlage 10 %

Ein energieeffizienter Betrieb bedeutet u.a.:
	 Durch die Beschaffung effizienter Geräte der Informations- und Kommunikationstechnik reduzieren sich

	

Strom- und Betriebskosten.

Zum Beispiel Bürogeräte: Geräte der Informations- und Kommunikationstechnik sind in Bürogebäuden für etwa 40 Prozent des Stromverbrauchs verantwortlich. An erster Stelle ist der PC zu nennen, der den größten Anteil am Stromverbrauch pro Arbeitsplatz besitzt und bis zu 90 Prozent seines Stromverbrauchs im ungenutzten Zustand hat. Hier kann bereits mit geringen Investitionen sowie mit Nutzung des geräteeigenen Energiemanagementprogramms eine Verbrauchsverringerung erzielt werden. Das Spektrum an Geräten sowie deren Effizienz verändert sich mit hoher Geschwindigkeit, gleichzeitig werden die Geräte schon nach wenigen Jahren durch eine neue Generation ersetzt. Beschaffungsstellen können mit Hilfe aktuell nachgeführter internetbasierter Datenbanken jederzeit effiziente Geräte identifizieren. Eine davon ist hier gezeigt:

Abb. 3	 Beispiel einer internetbasierten Datenbank

Stromsparkonzept Sektor Büro – Seite 9

Bürogebäude

Im Folgenden werden Anforderungen an die Energieeffizienz von Stromverbrauchern im Bereich „Bürogebäude“ formuliert. Sie folgen aus den speziell zur Büronutzung zusammengestellten Informationen dieses Kapitels. Für Informationen zu nutzungsübergreifenden Themen wie z.B. zu Allgemeinstrom, Aufzügen oder Umwälzpumpen wird auf die entsprechenden Querschnittskapitel im Gesamtbericht verwiesen.

2		

Stromverbrauch von Bürogebäuden

Elektrische Kennzahlen neuerer Dienstleistungsgebäude in Standard-Ausführung liegen bei rund 28 bis 100 kWh/ m²*a, bezogen auf die Bruttogeschossfläche (nach Schweizer Quelle, daher BGF [Jakob/Jochem]); bezogen auf die NGF entspricht dies etwa 35 bis 120 kWh/m²*a. Effiziente Gebäude liegen bei 80 bis 140 MJ/m²*a bezogen auf BGF, umgerechnet bei rund 22 bis 40 kWh/m²*a, pro NGF also rund 25 bis 45 kWh/m²*a.

Tab. 1	 Spezifischer Stromverbrauch für ein Bürogebäude (bezogen auf NGF beheizt) 		 (Aachen 2002 nach [BINE 13/07]) Planung (nach WSVO 95) [kWh/m2a] Kühlung Luftförderung Beleuchtung Hilfsenergien 3,3 2,0 10,0 3,3 Betriebsjahr 2004 [kWh/m2a] 3,6 3,9 12,5 3,5 Betriebsjahr 2005 [kWh/m2a] 3,5 4,3 10,8 2,7 Betriebsjahr 2006 [kWh/m2a] 3,0 4,3 10,8 2,8

Tab. 2	 Spezifischer Stromverbrauch für ein Bürogebäude (bezogen auf NGF beheizt) 		 (Verwaltungszentrum Eberswalde nach [BINE 16/09]) Planung nach EnEV (Ausführungsplanung) [kWh/m2a] Beleuchtung Kühlung Hilfsenergien und Pumpen (HKS-Antriebe und Lüfter) 37 9 29 Betriebsjahr 2008 (Messung) [kWh/m2a] 33,5 6,1 29,9

Neuere bestehende Büro- und Verwaltungsgebäude erreichen für die Beleuchtung einen Energiekennwert von etwa 35 kWh/m²*a (bezogen auf die beheizte Nettogrundfläche), für die Hilfsenergie-Heizung und die Pumpen etwa 30 kWh/m²*a [BINE 16/09]. Wird der Energieverbrauch von heutigen Bürogebäuden primärenergetisch betrachtet, dann macht der Stromverbrauch für Lüftung (15 Prozent), Beleuchtung (27 Prozent) und für aktive Kühlung (11 Prozent) einen hohen Anteil am Gesamtenergieverbrauch aus. Die zunehmende energetische Verbesserung der Gebäudehülle im Zuge der Energie-Einsparverordnung verstärkt die Bedeutung des Stromverbrauchs in der Gesamtbilanz [BINE I/2007].

Stromsparkonzept Sektor Büro – Seite 10

Bezogen auf die beschäftigte Person findet sich in einer Schweizer Quelle für Verwaltungsgebäude sowie den Sektor Kredit und Versicherungen ein Kennwert von 7.262 bzw. 7.408 kWh Stromverbrauch pro Jahr und Person [BoN]. In dieser Studie werden die Betriebszeiten von Geräten und Anlagen zu Zeiten ohne Nutzung (BoN – Betrieb ohne Nutzung) analysiert. In bestehenden Schweizer Gebäuden aus dem Dienstleistungssektor wird demnach typischerweise die Hälfte des eingesetzten Nachtstroms als BoN verbraucht. Mit regeltechnischen Maßnahmen und verbesserter Technik ließe sich der Nachtstromverbrauch durch Minimierung des BoN auf etwa 2/3 des heutigen Wertes verringern. Über den gesamten Tagesverlauf betrachtet ließe sich durch die Reduktion des BoN etwa ein Sechstel des Stromverbrauchs in der Schweiz einsparen. Diese letztgenannte Aussage der Autoren bezieht sich nicht nur auf den detaillierter dargestellten Dienstleistungssektor, sondern auf den gesamten Stromverbrauch der Schweiz. Energiespezifische Daten aus diesem Nachbarland lassen sich mit einer gewissen Schwankungsbreite auf deutsche Verhältnisse übertragen. Das Beispiel zeigt, dass es sich lohnt, das Augenmerk auch auf dieses Verbrauchssegment zu legen und
	 Präsenz-/Bewegungsmelder an geeigneten Anlagen zu installieren (Beispiel Beleuchtung), 	 Geräte zu verwenden, die sich nach längeren Nutzungspausen selbst abschalten (Beispiel Arbeitsplatzgeräte), 	 eine Regeltechnik einzubauen, die gute Überwachungs- und Steuerungsmöglichkeiten für die tatsächlichen

	

Nutzungszeiten bietet (Beispiel Lüftungsanlagen, Kältetechnik, Aufzüge), 	 generell auf niedrige Stand-by-Verluste zu achten.

3		

Allgemeinstrom

Auch in Bürogebäuden gibt es eine Reihe von Allgemeinstromverbrauchern, wie z.B. Überwachungsanlagen für sicherheitstechnische Belange oder zum Brandschutz, Beleuchtung auf allgemein zugänglichen Verkehrswegen, ggf. Druckerhöhungsanlagen für die Wasserversorgung, technische Anlagen in einer Tiefgarage etc. Im Wohnbereich sind Richtwerte dazu verfügbar, die von einem jährlichen Stromverbrauch von 4 bis 5 kWh pro Quadratmeter Wohnfläche ausgehen [Allgemeinstrom 09], im Bürosektor ist keine vergleichbare Angabe bekannt. Als Arbeitshypothese kann von einem Wert in ähnlicher Höhe ausgegangen werden; damit ergibt sich umgerechnet durch den Allgemeinstrom ein (marginaler) Kostenaufschlag auf den Mietpreis von etwa 1 Euro pro Quadratmeter und Jahr, also unter 10 Cent pro Quadratmeter und Monat. Wesentliche Einsparungen in diesem Verbrauchssegment können durch eine effiziente Beleuchtung der Verkehrswege sowie durch sparsame Netzteile z.B. für Überwachungseinrichtungen, Klingelanlage und ähnliches erreicht werden. Nähere Informationen hierzu finden sich im Querschnittskapitel „Allgemeinstrom“ im Gesamtbericht.

Stromsparkonzept Sektor Büro – Seite 11

4		

Aufzüge

Aufzugsanlagen sind in allen neu erstellten größeren Baukörpern enthalten. Der Stromverbrauch der bestehenden Anlagen liegt insgesamt bei schätzungsweise 0,5 Prozent des Gesamtstromverbrauchs Deutschlands [nach Nipkow 06]. Interessant ist, dass er sich durch technische Optimierungen um etwa 40 Prozent verringern ließe. Dies gilt für vorhandene Aufzüge, bei Neuanlagen kann sofort optimiert geplant werden. Wesentliche Sparpotenziale können realisiert werden, wenn im Objekt ein Aufzug angemessener Größe mit optimiertem Gegengewicht, ggf. mit Rückgewinnung der Energie bei Fahrten ohne Last, installiert wird und wenn zudem auf eine effiziente Beleuchtungsanlage sowie auf niedrige Stand-by-Verluste geachtet wird. Letzteres lässt sich durch eine sparsame Regeltechnik realisieren sowie durch technische Lösungen, die zum Geschlossen-Halten der Türen keine Energie benötigen. Für Aufzüge gibt es mittlerweile ein Label, welches an das von Haushaltsgroßgeräten bekannte EU-Label angelehnt ist. Es unterstützt die Auswahl eines Aufzugs mit niedrigem Verbrauch, wenn Label-Klasse A oder B als Ausschreibungskriterium aufgeführt wird. Weitere Informationen finden sich im Querschnittskapitel „Aufzüge“ im Gesamtbericht.

5		

Umwälzpumpen

In Gebäuden in Passivhausbauweise kommen Umwälzpumpen vorrangig zur Bauteiltemperierung, ggf. für Erdreichwärmetauscher sowie für Kollektoranlagen vor, u. U. auch für die Warmwasserzirkulation. Wesentlich für einen niedrigen Stromverbrauch in diesem Segment ist ein optimiertes Gesamtsystem, die Pumpe als einzelner Baustein hat allerdings wesentlichen Anteil am Verbrauch. Seit wenigen Jahren sind Hocheffizienz-Pumpen am Markt erhältlich, die aufgrund ihrer Bauart (Permanentmagnetmotor) und einer Drehzahlregelung sehr viel weniger Strom für die gleiche Menge an Medientransport benötigen als heute üblicherweise vorhandene Pumpen. Auch für Pumpen existiert ein an das EU-Label für Haushaltsgroßgeräte angelehntes Label, welches von Herstellerseite freiwillig eingeführt worden ist. Wiederum empfiehlt es sich, eine Pumpe der Labelklasse A zu wählen, obwohl sie nennenswert teurer als das vergleichbare konventionelle Modell ist. Die Stromkostenersparnis macht dies bereits nach wenigen Jahren wett. Auch durch eine verbesserte Regeltechnik kann der Pumpenstromverbrauch erheblich verringert werden. Detailinformationen finden sich im Querschnittskapitel „Umwälzpumpen“ im Gesamtbericht.

Stromsparkonzept Sektor Büro – Seite 12

6		

Lüftung und Klimatisierung

Anforderungen und Gestaltungshinweise hinsichtlich des Raumklimas am Arbeitsplatz finden sich in der DIN EN 13779 „Allgemeine Grundlagen und Anforderungen an Lüftungs- und Klimaanlagen“ (betrifft die Anlagentechnik) und der Arbeitsstätten-Richtlinie [ASR 6] (betrifft Raumtemperaturen). [DIN EN ISO 7730] enthält Angaben zu Parametern für ein thermisch behagliches Innenraumklima. Es werden Toleranzfenster für Parameter zu Raumtemperaturen, Luftfeuchte und Luftgeschwindigkeit angegeben und dadurch ein Behaglichkeitsfeld und damit der Innenraumkomfort für Büroräume definiert.

Tab. 3	 Behaglichkeitsfeld für Büroräume

Raumtemperatur

Rel. Feuchte

Luftwechsel

Luftgeschwindigkeit (kein Zugluftempfinden Winterfall-Sommerfall) 0,1 m/s bis 0,25 m/s

20°C bis 26°C

30% bis 60%

0,5 h-1 bis 4 h-1

Ein Vergleich des Primärenergieverbrauchs für Bürogebäude aus dem Bestand und für Neubauten zeigt das Verhältnis von Strom und Wärme in der Gesamtbilanz [BINE I/2007]. Die Energieeinsparpotenziale liegen ganz eindeutig in den Bereichen Lüftungs-, Klima- und Beleuchtungstechnik. Ein hoher Innenraumkomfort kann auch bei energetisch optimierten Bürogebäuden erreicht werden [BINE 13/07].

Abb. 4	 Typische Primärenergiekennwerte für bestehende, neue und primärenenergetisch optimierte Bürogebäude 		 (aus EnOB Forschungsbereich EnBau) – [BINE I/2007]

Stromsparkonzept Sektor Büro – Seite 13

Büro- und Verwaltungsbauten kennzeichnen häufig ein hoher Flächen- und Volumenverbrauch für die technische Gebäudeausrüstung. Insbesondere für die raumlufttechnischen Anlagen bei vollklimatisierten Gebäuden. Hohe Kosten für Anschaffung, Unterhalt und Energie stellen die Frage nach einer Alternative.

6.1	 Schlanke Bürogebäude Der Begriff „schlanke Gebäude“ bezeichnet solche Bauten, die bereits auf Basis eines durchdachten Entwurfs und bauphysikalischer Qualitäten die Voraussetzung dafür mitbringen, hohen thermischen Komfort mit einer schlanken Gebäudetechnik zu erreichen. Architektur, Bausystem, Baukonstruktion und Gebäudetechnik werden dabei so aufeinander abgestimmt, dass ein möglichst geringer Energiebedarf für Heizung, Kühlung und Beleuchtung erreicht wird [BINE I/03]. Für die Lüftung in schlanken Bürogebäuden gelten folgende Kriterien:
	 geringe Druckverluste, da sonst ein hoher Energieaufwand für den Betrieb der Lüftungsanlage notwendig oder

	 	
	 	 	

	
	

	
	

eine freie Lüftung (passive Nachtlüftung) bzw. aktive Nachtkühlung (mit hohen Luftvolumenströmen) gar nicht möglich ist, Größe der Kanalquerschnitte auslegen für Strömungsgeschwindigkeiten unter 3 m/s, möglichst kurze Leitungswege, Luftmengenregelung zentral (einfach, z.B. Tag, Nacht, Sommer, Winter); Verzicht auf Volumenstromregler, wo einheitliche Nutzung gegeben ist (hohe Druckverluste), besonders energieeffiziente Ventilatoren für den Gesamtvolumenstrom – SFP 21 oder besser (Leistungsaufnahme unter 0,25 W/(m2/h) pro Ventilator) in Kombination mit in Reihe geschalteten, dezentralen Ventilatoren die bedarfsgerechte Lüftung (Drehzahlregelung) in einzelnen Gebäudeteilen und Räumen.

Herausragendes Merkmal schlanker Bürogebäude ist der mögliche Verzicht auf den Einsatz von Kältemaschinen zugunsten der so genannten „passiven“ Kühlung. Sie zeichnet sich dadurch aus, dass die Aufgaben der Klimatisierung durch Tag- und Nachtlüftung von der (aktiven) Gebäudetechnik in die (passive) Baukonstruktion verschoben werden. Damit dies möglich ist, müssen interne und solare Wärmelasten am Tag begrenzt, die Wärmespeicherfähigkeit des Gebäudes genutzt und eine ausreichende Wärmeabfuhr in der Nacht gewährleistet werden. Eine Lüftungsanlage mit Wärmerückgewinnung ist im hocheffizienten Bürogebäude sowieso installiert. Randbedingungen für eine passive Kühlung sind [s.a. PHI 31]
	 thermisch schwere Gebäude, 	 wirksame Belüftung der Gebäude bei Tag, u.U. Ergänzung durch einen Luft- oder Sole-Erdwärmetauscher

	

für passive Zuluftkühlung im Sommer,
	 Außentemperatur an mindestens 5 Stunden pro Nacht unter 21°C (Mikroklima beachten), 	 Konzept für den sommerlichen Wärmeschutz (Fensterflächen, außen liegender Sonnenschutz, erhöhte

	

Nachtlüftung).

Stromsparkonzept Sektor Büro – Seite 14 1 Spezifische Ventilatorleistung nach DIN EN 13779

6.2	 Erhöhte Anforderungen an Lüftung Die allgemeine Klassifizierung der Raumluftqualität im Aufenthaltsbereich2 erfolgt in [DIN EN 13779] nach hoher (IDA 1), mittlerer (IDA 2), mäßiger (IDA 3) und niedriger (IDA 4) Raumluftqualität3. Entsprechend dieser Klassifizierung werden Mindestwerte für den Außenluftvolumenstrom empfohlen. Während im Wohnbereich die Kategorie IDA 3 ausreichend ist, sollte im Bürobereich IDA 2 eingehalten werden.

Tab. 4	 Tabelle A.11 nach DIN EN 13779 – Außenluftvolumenströme je Person

Kategorie IDA 1 IDA 2 IDA 3 IDA 4
a

Einheit l l l l
•

Volumenstrom der Außen- oder Überströmluft je Bodenflächeneinheit
Üblicher Bereich Standardwert
a a

•

•

•

s-1 s-1 s-1 s-1

•

•

•

•

m-2 m-2 m-2 m-2

> 0,7 0,35 – 0,7 < 0,35

0,83 0,55 0,28

Für IDA 1 ist dieses Verfahren nicht ausreichend

Die durch die Lüftungsanlage sicherzustellende Raumluftqualität ist mit dem Auftraggeber zu vereinbaren. Bei allgemeiner Büronutzung sollte der Regelbereich für den Außenluftvolumenstrom einen Maximalwert in der Größenordnung 45 m3/h/P nicht überschreiten (Umrechnung des Standardwerts von 12,5 l/s pro Person ergibt einen Außenluftvolumenstrom von 45 m3/h.) Um eine allzu trockene Raumluft zu verhindern, empfiehlt sich im Winter ein Luftwechsel unter 0,3fach pro Stunde. Räume mit einer hohen Personendichte, z.B. Besprechungsräume, werden besser mit einer CO2-Regelung für den Luftvolumenstrom ausgestattet. Die Klassifizierung der spezifischen Ventilatorleistung (pro Ventilator) erfolgt in Tabelle 9 der [DIN EN 13779]. Die spezifische Ventilatorleistung kann durch zusätzliche Druckverluste im Fall von Sonderanwendungen erweitert werden (Tabelle 10 Erweiterte PSFP für zusätzliche Bauteile wie z.B. Filter).

Tab. 5	 Tabelle 9 nach DIN EN 13779 Klassifizierung der spezifischen Ventilatorleistung

Kategorie SFP 1 SFP 2 SFP 3 SFP 4 SFP 5 SFP 6 SFP 7
2 3

PSFP in W m-3 s
• •

< 500 500 – 750 750 – 1250 1250 – 2000 2000 – 3000 3000 – 4500 > 4500

VDI 6022 Hygieneanforderungen an RLT und Geräte, VDI 6018 thermische Behaglichkeit (in Arbeit) hygienische Aspekte in VDI 6022, thermische Behaglichkeit in VDI 6018 (in Arbeit) Stromsparkonzept Sektor Büro – Seite 15

Nach LEE können für die volumenstromspezifische elektrische Leistungsaufnahme Grenz- und Zielwerte in Abhängigkeit des Anlagentyps festgelegt werden. Führt man die Tabellen mit Richtwerten für Ventilatoren-Wirkungsgrade und Kanalnetz-Druckverluste aus dem LEE zusammen, ergibt sich das in der folgenden Tabelle aufgeführte Ergebnis. Diese Vorschläge wurden von ebök in [Effizienzkriterien HD] für Lüftungsgeräte in kommunalen Gebäuden in Heidelberg gemacht. Ein Vergleich der Ventilatorleistung der Kategorie SFP 2 mit dem Effizienzkriterium Strom für Ventilatoren bei Passivhäusern (vgl. auch Broschüre Wohnen Kapitel 6.1) und den Kriterien für schlanke Bürogebäude zeigt Übereinstimmung.

Tab. 6	 Grenz- und Zielwerte für die spezifische elektrische Leistungsaufnahme von Lüftungsgeräten

Empfohlene Ventilatorleistung für Zu-/Abluftanlage (zwei Ventilatoren) Kategorie spezifische elektrische Ventilatorleistung (pro Ventilator) von W/(m3/s)	 Zu-/Abluftanlage mit WRG nach [Effizienzkriterien HD] SFP nach DIN EN 13779 		 Nach RLT-Richtlinie 01 des Herstellerverband Raumlufttechnische Geräte e.V. existiert außerdem ein Energielabel für RLT-Geräte: das Label verbindet verschiedene Anforderungen an die Einheiten von raumlufttechnischen Anlagen (wie Klappen, Lüfter, Wärmerückgewinnungseinheiten, ...) zu einem einfachen, nachvollziehbaren und nachprüfbaren Kennwert, der durch die Effizienzklassen4 A+, A und B dargestellt wird. Dies gibt dem Planer, Anlagenbauer und Betreiber die Sicherheit energetisch optimierte Geräte zu verwenden. 500			 750 bis W/(m3/s) spezifische elektrische Ventilatorleistung (pro Lüftungsgerät) von W/(m3/h)	 bis W/(m3/h)

0,25			 0,28			

0,50 0,42

Abb. 5	 Label Energieeffizienzklasse A+, A und B des Herstellerverbands Raumlufttechnische Geräte e.V. [RLT 01]

4

Herstellerverband Raumlufttechnische Geräte e.V. 	 Erfüllt ein RLT-Gerät alle Kriterien innerhalb der Energieeffizienzklassen und wird der Hersteller vom TÜV-SÜD überwacht und zertifiziert, 	 dürfen die entsprechenden Label verwendet werden.

Stromsparkonzept Sektor Büro – Seite 16

6.3	 Erhöhte Anforderungen an Kühlung Für bestimmte Nutzungszonen wie Konferenz- oder Besprechungszimmer kann räumlich und zeitlich begrenzt erhöhter Kühlbedarf anfallen. Dezentrale außenwandintegrierte flinke Lüftungstechnik (Fassaden- oder UnterflurLüftungsgeräte) bzw. Kühltechnik (z.B. in Form von Kompaktanlagen als Einzel- oder Multisplitgeräte) ermöglicht die gezielte, bedarfsabhängige Lüftung und Kühlung dieser Räume. Die Versorgung mit konditionierter Außenluft erfolgt dann nur, solange der entsprechende Raum genutzt wird. Bei vorhandener zentraler Kühlung über Betonkernkühlung (BKT) besteht die Möglichkeit, einzelne Räume zur notwendigen Erhöhung der Wärmelast-Abfuhr zusätzlich mit Kühldecken oder Kühlsegeln auszustatten. Aus Serverräumen bzw. Räumen mit Geräten, die hohe innere Lasten produzieren, sollte anfallende Wärme direkt abgeführt und damit eine flächendeckende Kühlung des Gebäudes vermieden werden. Um zusätzliche solare Wärmelasten zu vermeiden, empfiehlt es sich, solche Räume nach Norden zu orientieren oder in fensterlosen Bereichen/ im UG einzuplanen. Lüftungsanlagen in Bürogebäuden sind in der Regel auf einen Luftwechsel von 2 h-1 und mehr ausgelegt. Bei vorhandenen Überströmöffnungen kann damit für das gesamte Gebäude eine aktive Nachtkühlung im Abluftbetrieb eingesetzt werden.

Effizienzkriterien Bei nachgewiesenem Bedarf ergeben sich Richtwerte für die spezifische Kühlleistung aus nachfolgender Tabelle in Abhängigkeit von den internen Lasten verursacht durch Personen, Beleuchtung und Arbeitshilfen im Durchschnitt über die tägliche Nutzungsdauer (= mittlere interne Wärmelast) [LEE 2000]. Diese mittlere interne Wärmelast dient hierbei lediglich zur Berechnung der Grenz-, Ziel- und Richtwerte und nicht als Auslegungsgröße für die Anlagen.

Tab. 7	 Richtwerte für die Kühlleistung nach [LEE 2000]

mittlere interne Wärmelast	

mittlere flächenspezifische elektrische Leistung Kühlung einfacher Richtwert verbesserter Richtwert W/m2 10 13

W/m 30 40

2

W/m 12 16

2

Annahmen: durchschnittliche Anwesenheit pro Person pro Betriebstag 6-11 Stunden Belegungsdichte pro Person 10 m2 => mittlere Wärmelast über einen 11-stündigen Betriebstag für Wärmeleistung pro Person 70 W (über Arbeitstag gemittelt)	=> ca. 4-7 W/m2 Wärmelast für Beleuchtung (bei aktiviertem Sonnenschutz) 	 => 8-12 W/m2 Wärmelast durch Arbeitshilfen bei 100 W pro Person (mittlerer Technisierungsgrad) 	 => ca. 10 W/m2 bei 150 W pro Person (hoher Technisierungsgrad) => ca. 15 W/m2 Die spezifische Leistung Kühlung ergibt sich durch Division mit der mittleren Leistungszahl (Verhältnis von Kälteleistung zum Gesamtstrombedarf) der Kühlanlage: 2,5 für einfachen Richtwert / 3,0 für verbesserten Richtwert

Stromsparkonzept Sektor Büro – Seite 17

6.4	 Kennwerte Lüftung und Klimatisierung in Bürogebäuden Für Lüftungs- und Kältegeräte in Bürogebäuden sollten die folgenden Kennwerte eingehalten werden.

Tab. 8	 Kennwerte Lüftung und Klimatisierung

Spezifische elektrische Ventilatorleistung
Ventilatorleistung nach Kategorie SFP 2

Anlagen mit Wärmeübertrager
Wärmebereitstellungsgrad 75% oder besser Die Energiekonzeption Heidelberg 2010 fordert 80%.

Kältegeräte – sofern notwendig –
Arbeitszahl 3,5 und besser

7		

Beleuchtung

7.1	 Allgemeinbeleuchtung Für Büros und gewerbliche Flächen sind schon seit vielen Jahren Leuchtstofflampen übliche Lichtquellen. Durch die Optimierung der Lichtfarben sowie die zahlreichen in den letzten Jahren entwickelten Bauformen hat sich das Anwendungsfeld für Energiesparlampen respektive Kompaktleuchtstofflampen sehr verbreitert. In den letzten Jahren sind LED (Light Emitting Diode) hinzugekommen, ein Leuchtmittel auf Halbleiterbasis, das aufgrund seines Funktionsprinzips besonders langlebig ist. Ein Maß für die Effizienz verschiedener Leuchtmittel ist der Lichtstrom pro Watt eingesetzter Leistung – die Lichtausbeute. Wichtige Kenndaten für die Auswahl von Leuchtmitteln sind in der nachfolgenden Tabelle für verschiedene Lampen dargestellt.
Tab. 9	 Kenndaten verschiedener Leuchtmittel [Allgemeinstrom 09]

Leuchtmittel im Vergleich
Elektrische Leistung (W) Glühlampen (Standard) 15 - 200 60 - 250 33 - 400 Lichtstrom (Lumen) 90 - 3.150 280 - 4.350 460 - 9.200 Lichtausbeute (lm/W) 5 - 16 5 - 17 13 - 23 Mittlere Lebensdauer (h) 1.000 2.000 2.000 Gebrauch

Allgemeinbeleuchtung Allgemeinbeleuchtung Allgemeinbeleuchtung, Akzentbeleuchtung, Bildbeleuchtung Allgemeinbeleuchtung, Akzentbeleuchtung, Bildbeleuchtung Allgemeinbeleuchtung, Akzentbeleuchtung, Bildbeleuchtung

Temperaturstrahler

Hochvolt-Halogenlampen 230V Xenon Halogenlampen 230V

Niedervolt-Halogenlampen 12V

5 - 100

60 - 2.300

12 - 21

2.000

IRC Niedervolt-Halogenlampen 12V

25 - 65

500 - 1.700

20 - 26

5.000

Stromsparkonzept Sektor Büro – Seite 18

Elektrische Leistung (W)

Lichtstrom (Lumen) ca. 20

Lichtausbeute (lm/W) 30 - 60

Mittlere Lebensdauer (h) 50.000

Gebrauch
Anzeigen, Effekt-, Akzent-, Orientierungsbeleuchtung

LED

LED (weiß, 1 Stück)

0,7 - 1,5

Energiesparlampen – Kompaktleuchtstofflampen mit integriertem EVG Kompaktleuchtstofflampen ohne integriertes EVG

5 - 23

100 - 1.500

33 - 65

10.000 - 15.000

Allgemeinbeleuchtung

5 - 55

250 - 4.800

50 - 88

k. A.

Gewerbliche Beleuchtung, Keller, Flure Anstrahlungen, Sportstätten, Industriehallen Innen- und Außenbeleuchtung mit schwierigem Zugang: Tunnel, Industriehallen, Straßenbeleuchtung Allgemein-, Arbeitsgewerbliche Beleuchtung, Möbel-, Bildbeleuchtung Straßen, Trainingsbeleuchtung, Industriebeleuchtung, bes. Ausführungen auch für Akzent- und Verkaufsbeleuchtungen Häfen, Tunnel, Fußgängerüberwegen, Objektschutz, Überwachungskameras

Gasentladungslampen

Halogen-Metalldampflampen

35 - 400

3.300 36.000 3.500 12.000

60 - 100

6.000

Induktionslampen

55 - 165

65 - 80

60.000

Leuchtstofflampe

14 - 80

1.350 7.000

52 - 104

9.000 - 16.000

Natriumdampf-Hochdrucklampen

35 - 600

1.300 90.000

39 - 150

8.000

Natriumdampf-Niederdrucklampen (gelbes Licht)

18 - 180

1.770 32.500

98 - 181

8.000

Die Angaben in der Tabelle beziehen sich auf im Jahr 2010 marktgängige Modelle; einzelne LED-Lampen sind bereits mit 60 bis 80 lm/W erhältlich, allerdings im hochpreisigen Segment. Im Labor sind bereits LED mit 150 lm/W und mehr gemessen worden, diese werden in kurzer Zeit marktverfügbar sein – daher lohnt es sich hier, regelmäßig auf das Angebot zu schauen. Auch für Leuchtmittel gilt die Einstufung in die Effizienzklassen A bis G, wie es bereits von Haushaltsgroßgeräten gut bekannt ist. Es empfiehlt sich, beim Neukauf Lampen mit EU-Label A zu wählen. EVG (elektronische Vorschaltgeräte) sollten aufgrund des besseren Wirkungsgrads, der längeren Lebensdauer der Leuchtmittel, der besseren Schaltfestigkeit und der Abwesenheit von Flackern grundsätzlich eingesetzt werden. Moderne Energiesparlampen mit elektronischem Vorschaltgerät haben eine hohe Schaltfestigkeit; manche Modelle (Treppenhauslampen) sind selbst bei Schaltvorgängen an der warmen Lampe stabil, wenn dies auch in der Regel eher zu vermeiden ist. Besonders LED sind sehr schaltfest. Die lange Lebensdauer machen LED trotz der noch hohen Anfangsinvestition insbesondere dort wirtschaftlich interessant, wo eine lange Betriebsdauer der Lampen erforderlich ist, z.B. in innen liegenden Fluren. Dort amortisieren sich LED-Lampen oft nach 2 bis 3 Jahren, selbst im Vergleich mit Leuchtstofflampen.

Stromsparkonzept Sektor Büro – Seite 19

Tab. 10	 Betriebskostenvergleich zwischen Leuchtstoffröhren und LED [eigene Berechnungen]

Wirtschaftlichkeitsberechnung für Leuchtstoffröhren ESL T8 mit VVG
Leistung (W) bei gleicher Helligkeit Betrachtete Brenndauer (h) Stromverbrauch (kWh) Stromkosten (Euro), gerechnet mit 25 Cent/kWh Anschaffungspreis (Euro), jew. anteilig auf 10.000 Stunden gerechnet Betriebskosten (Euro) Kostenvorteil ESL T5 ggü. ESL T8 Kostenvorteil LED ggü. ESL T8 700 175 3 178 70

ESL T5 mit EVG
45 10.000 450 113 (50 Euro inkl. EVG) 0,4*50 = 20 133 45 102

LED
23 230 58 (90 Euro) 0,2*90 = 18 76

Die in der Tabelle verwendete Bezugsgröße von 10.000 Stunden ergibt sich aus der erwarteten Lebensdauer einer Energiesparlampe (ESL) T8 mit verlustarmem Vorschaltgerät (VVG); am elektronischen Vorschaltgerät (EVG) halten die effizienteren ESL T5 im Schnitt 25.000 Betriebsstunden lang durch (daher Faktor 0,4 auf die Anschaffungskosten), LED 25.000 bis 100.000 Std. (gerechnet wurde im gezeigten Beispiel mit 50.000 Std., daher werden die Anschaffungskosten nur zu 20 % angesetzt). Die gezeigte Wirtschaftlichkeitsberechnung wurde mit einem Strompreis von 25 ct/kWh erstellt. Gegebenenfalls muss hier ein tieferer Preis angesetzt werden, falls mit dem Versorgungsunternehmen andere Konditionen ausgehandelt werden konnten. An der Tendenz der Aussage ändert sich jedoch nichts, auch bei 20 ct/kWh sind die beiden effizienteren Varianten der Installation von T8-Lampen vorzuziehen.

Herkömmliche Glühlampen werden aufgrund einer EU-Richtlinie aus der Produktion genommen, für die 100 W-, die 75 W- sowie die 60 W-Klarglasglühlampen, für alle Mattglaslampen sowie für besonders ineffiziente Glühlampen niedriger Leistung ist dies bereits in Kraft. Weitere Lampengruppen werden folgen [UBA 09]. Näheres hierzu findet sich im Querschnittskapitel zu Beleuchtung im Gesamtbericht. Neben der Effizienz der eingesetzten Lampe ist auch der Leuchtenwirkungsgrad, der das Verhältnis des von der Leuchte abgegebenen Lichtstroms zum Lichtstrom der in der Leuchte eingesetzten Lampen wiedergibt, ein wichtiger Faktor für einen guten Energienutzungsgrad einer Beleuchtungsanlage. Ein guter Wert ist ein Leuchtenwirkungsgrad von 80 Prozent. Je nach Sehaufgabe ist eine angemessene Beleuchtungsstärke und –qualität vorzusehen, die DIN EN 12464-1 gibt hierzu umfangreiche Vorgaben, nachstehend ein Auszug. Neben dem erforderlichen Lichtstrom ist auch eine geeignete Farbwiedergabe notwendig, gemessen durch den Farbwiedergabeindex Ra. Üblicherweise ist ein Index von 80 ausreichend, für Nebenflächen auch von 60, er sollte bei anspruchsvollen Sehaufgaben und vor allem dort, wo Farbunterscheidungen wichtig sind, 90 betragen.

Tab. 11	 Erforderliche Beleuchtungsstärke bei verschiedenen Sehaufgaben [DIN EN 12464-1]

Tätigkeit	 Sektor Büro
Schreiben, Schreibmaschine schreiben, Lesen, Datenverarbeitung	 Ablegen, Kopieren, Verkehrszonen	 Technisches Zeichnen	 CAD-Arbeitsplätze	 Besprechungsräume	 Empfangstheke	 Kantinen, Teeküchen	

Beleuchtungsstärke (Lux)	 Farbwiedergabeindex (Ra)

500			 300			 750			 500			 500			 300			 200			

80 80 80 80 80 80 80

Stromsparkonzept Sektor Büro – Seite 20

Tätigkeit	 Öffentliche Bereiche
Eingangshallen	 Garderoben	 Umkleideräume	 Verkehrsflächen, Flure	 Treppen, Rolltreppen, Fahrbänder	

Beleuchtungsstärke (Lux)	 Farbwiedergabeindex (Ra)

100			 200			 300			 100			 150			

80 80 80 80 40

Generell wird empfohlen, helle Oberflächen in den Räumen vorzusehen, um den Stromverbrauch für Beleuchtung niedrig halten zu können. Die Beleuchtung soll, um unnötige Ermüdung des Auges zu vermeiden, so ausgelegt sein, dass der Helligkeitskontrast zwischen Flächen, die gleichzeitig im Blickfeld sind, nicht zu groß wird. In der Praxis bedeutet das, dass in der Regel die Umgebung im Umkreis von 1/2m rund um die eigentliche Sehaufgabe eine Helligkeitsstufe niedriger ausgeleuchtet sein kann, also bei 500 Lux auf der Arbeitsfläche 300 Lux im Umfeld [Lichtklima]. Gut ausgewählte und genutzte Regeltechnik kann zur Einsparung beitragen, wie dieses Beispiel zeigt: In einer Studie aus Bremen [HB-BEI 07] wurde gemessen, dass in Bildungseinrichtungen (Seminarräumen) durch den Einsatz von Gebäudebustechnik eine Einsparung am Lichtstromverbrauch von etwa einem Viertel erreicht werden kann. Es wurde über Präsenzmelder, Helligkeitssensoren und Dimm-Aktoren eine bedarfs- und nutzungsabhängige Beleuchtung realisiert. Das Bus-System diente gleichzeitig zur Heizungsregelung.

7.2	 Beleuchtung am Arbeitsplatz Hocheffiziente Beleuchtungssysteme können mit einer installierten Leistung von 8 W/m² bis 12 W/m² auf Tischhöhe eine Beleuchtungsstärke von 500 Lux erzielen. Vorteilhaft ist die Kombination von Präsenzmelder und Helligkeitssensor. Direkt- und Indirektanteile von Leuchten können je nach Abstand vom Fenster variiert und damit kann den Anforderungen optimal nachgefahren werden [BINE 16/09]. Im Vergleich zu einer konventionellen Lichtschaltung mit Wandschalter kann im Bürobereich ein Abwesenheitssensor etwa 30 Prozent einsparen. Wird zusätzlich tageslichtabhängig gedimmt, kann der Stromverbrauch für die Beleuchtung um etwa 2/3 verringert werden [Bay LA Umwelt 2008]. Energietechnisch optimal ist es, wenn Licht als bewusste Nutzerentscheidung eingeschaltet wird, das Ausschalten bzw. Dimmen jedoch automatisch erfolgt, geregelt durch Tageslichtsensor sowie Präsenzmelder. Automatisches Einschalten kann den Stromverbrauch erhöhen, wenn subjektiv von Seiten der Anwesenden noch keine Beleuchtung erforderlich scheint. Wichtig für eine gute Nutzung des Tageslichts ist eine ausreichende Fensterfläche und nach Möglichkeit der Verzicht auf einen Fenstersturz. Gerade das durch den oberen Fensterteil einfallende Licht sorgt für Helligkeit in der Raumtiefe. Kaum einen Einfluss auf den nutzbaren Tageslichtanteil hat hingegen die unterhalb der Tischebene befindliche Fensterfläche [Bay LA Umwelt 2008]. Für den Blendschutz sind Lamellenstores mit unterschiedlich ausgebildeten Lamellen hilfreich, die im oberen Bereich des Fensters einfallendes Licht gegen die (helle) Decke reflektieren, so dass auch in der Raumtiefe trotz

Stromsparkonzept Sektor Büro – Seite 21

Einsatz des Sonnenschutzes ausreichend Tageslicht vorhanden ist. Andernfalls kann die kontraproduktive Situation eintreten, dass an einem hellen Sonnentag Strom für die Beleuchtung erforderlich ist, weil Teile der Bürofläche nicht ausreichend ausgeleuchtet werden. Leuchten sollten turnusmäßig gereinigt werden. Durch Verschmutzung nimmt der Leuchtenwirkungsgrad kontinuierlich ab. Daher sollte dieser Arbeitsschritt in einen Wartungsplan für Hausmeister aufgenommen werden. Weitere Details zum Thema Beleuchtung finden sich im Querschnittskapitel „Beleuchtung“ im Gesamtbericht. 7.3	 Kennwerte Bürobeleuchtung Der genannte Kennwert für die installierte Lichtleistung sollte nicht überschritten werden (Lichtpunkthöhe 2,5 bis 2,8 m, helle Oberflächen vorausgesetzt). Es sollten Leuchtmittel mit einer Lichtausbeute von mindestens 60 Lumen pro Watt eingesetzt werden.

Tab. 12	 Kennwerte nach [LEE 2000] und [Herstellerangaben]

Maximal installierte Lichtleistung
8 bis 12 W/m²

Mindest-Lichtausbeute
60 Lumen pro Watt

Leuchtenwirkungsgrad
80%

8		

Informations- und Kommunikationstechnik

8.1	 Rechenzentren und Serverräume Eine EU-geförderte Studie eines Konsortiums von deutschen, österreichischen und französischen Instituten und Firmen kam 2008 zu dem Ergebnis, dass in der EU-27 im Jahr 2006 knapp 40 TWh für Speicher, Netzwerkkomponenten und Infrastruktur in Rechenzentren verbraucht wurden, zudem etwa 17 TWh für die Server [Efficient Servers 08]. Die Studie unterscheidet drei Szenarien für die Verbrauchsentwicklung:
	 der Verbrauch verdoppelt sich binnen 5 Jahren (Szenario „Business as usual“) – falls keine steuernden

	

Maßnahmen unternommen würden, 	 er steigt um etwa ein Drittel an (Szenario „Moderate“) – falls politische Aktivitäten erfolgen, oder 	 er nimmt um gut 10 Prozent ab (Szenario „Forced“) – falls umfangreiche politische Aktivitäten unternommen 	 werden. Dies zeigt die Breite der technischen Möglichkeiten auf, die erst recht auf der lokalen Ebene gilt. Die Kosten für die Energie im Betrieb und die Kühlung summieren sich über die Standzeit von Rechenzentren mittlerweile auf gleich hohe oder höhere Beträge wie die Anschaffungskosten [Energy2.0 Kompendium 2008].

Stromsparkonzept Sektor Büro – Seite 22

Eine Verbrauchsreduktion um etwa ein Drittel ist erreichbar durch stromeffiziente Komponenten (Speicher, CPU, Lüfter und Stromversorgung). Mehrkosten der Bauteile können durch reduzierte Betriebskosten an der Rechnereinheit sowie der TGA-Peripherie (Lüftung und Klimatisierung) binnen eines Jahres amortisiert werden. Multi-Core-Prozessoren bieten mehr Rechenleistung pro installiertem Watt elektrischer Leistung. Mit gleichem Leistungsbezug und gleichen Betriebskosten können diese mehr Klienten versorgen als die herkömmliche Bauart. Werden Rechner jeweils nur für bestimmte Aufgaben vorgehalten, wie heute vielfach üblich, sind sie in der Regel relativ schlecht ausgelastet. Auch bei Teillast ziehen sie immer noch elektrische Leistungswerte in Höhe von etwa 85 Prozent bis 90 Prozent gegenüber dem Normalbetrieb. Die Virtualisierung von Servern kann hier sowohl Investitionsvolumen wie auch Betriebskosten verringern, indem weniger Anlagen benötigt und diese besser ausgelastet werden. Effizientere Server benötigen geringere Kühlleistung bei gleicher Rechenleistung, dies reduziert die TGA-Investitionen wie auch die erforderliche Betriebsenergie. In hoch verdichteten Rechnereinheiten kann es sinnvoll sein, statt Luftkühlung auf wassergekühlte Racks zu setzen. Bei guter und konsequenter Planung können auch die herkömmlichen Luftkühlungssysteme deutlich optimiert werden, indem Fehlluftraten reduziert, Kalt- und Warmluftgang sorgfältig getrennt geführt und Hochtemperaturnester vermieden werden. Wesentlich ist, auf welche Solltemperatur abgezielt wird. Veröffentlichungen aus der Schweiz gehen davon aus, dass in der Regel eine Raumtemperatur von 26°C für die Rechner unschädlich ist [26°C]. Ersparnisse am Kühlenergieeinsatz von bis zu 40 Prozent gegenüber einer Zieltemperatur von 22°C sind realisierbar. Wie erwähnt müssen allerdings Hot Spots durch das Design der Rechnerschränke sowie eine geeignete Luftführung vermieden werden. Zudem gibt es Planungsansätze, die Abwärme aus den Rechnerräumen anderweitig in die Versorgungsstruktur einzubauen, z.B. über Wärmetauscher in die Warmwasserbereitung.

8.2	 Informations- und Kommunikationstechnik dezentral Geräte der Informations- und Kommunikationstechnik sind in Bürogebäuden für etwa 40 Prozent des Stromverbrauchs verantwortlich. Das Spektrum an Geräten sowie deren Effizienz verändert sich mit hoher Geschwindigkeit, gleichzeitig werden die Geräte schon nach wenigen Jahren durch die neue Generation ersetzt. Daher ist eine aktuell nachgeführte internetbasierte Datenbank hier das Mittel der Wahl, um jederzeit ein effizientes Gerät auffinden zu können. Genannt seien hier vorrangig www.topten.ch, www.ecotopten.de und www.stromeffizienz.de/ dienstleister-oeffentliche-hand.html. In der Datenbank www.no-e.de/html/unglaublich.html sind Werte zum Stand-by-Verbrauch vieler Geräte der Informations- und Kommunikationstechnik aufzufinden [no-e Stand-by]. Eine ungefähre Einschätzung, in welcher Größenordnung der Stromverbrauch von Bürogeräten liegt und welche Geräte dominant im Verbrauch sind, vermittelt die nachfolgende Grafik (bezogen auf 240 Arbeitstage pro Jahr). Insbesondere ist auch interessant, wie hoch der Anteil des Stromverbrauchs im ungenutzten Zustand ist; dies können bis zu 90 Prozent sein [PC-Arbeitsplatz]. Viele Geräte verbleiben lange im Stand-by-Zustand oder im Schein-Aus (vermeintlich abgeschaltet, jedoch noch Leistungsbezug, häufig aufzufinden bei PC), dies lässt sich bei energiebewusster Nutzung vermeiden. Der PC dominiert den Stromverbrauch am Arbeitsplatz und hat gleichzeitig hohe Anteile ungenutzter Laufzeit. Daher ist dies ein Angriffspunkt, an dem schnell und ohne bzw. mit geringen Investitionen eine Verbrauchsverringerung erzielt werden kann.

Stromsparkonzept Sektor Büro – Seite 23

Abb. 6	 Verteilung des Stromverbrauchs am Arbeitsplatz auf die typischerweise vorkommenden Geräte [PC-Arbeitsplatz]

Typischer Stromverbrauch am PC-Arbeitsplatz

Komfort-/Drahtlostelefon* Scanner Faxgerät* Router/Modem* Gemeins. Drucker/Kopierer* Arbeitsplatz-Drucker LCD-Bildschirm Computer (Desktop) 0 50 100 150 200 250 300 350
	 	 	 davon aktive Nutzung, kWh 	 davon Stand-by und Schein-Aus bis zu xy kWh/Jahr

* Anteil an gemeinsam genutzten Geräten

Peripheriegeräte wie Drucker, Fax, Scanner und Kopierer sind seit einiger Zeit in Mehrfunktionsgeräten (MFC) zusammengefasst. Dies spart Produktionsenergie für die Geräte selbst und reduziert die Zahl der Netzteile. Zudem gibt es Geräte mit getrennten Farbkartuschen, so dass je nach Bedarf ersetzt werden kann. Für mehrere Arbeitsplätze kann jeweils ein solches MFC eine günstige Lösung sein. Effiziente Netzteile sind gerade bei dezentralen Anwendungen ein wichtiger Schritt zu effizienterem Stromeinsatz. Aufgrund der EU-weit geltenden EuP-Richtlinie dürfen Geräte, die seit 2010 produziert werden, im Stand-by nicht über 2 W verbrauchen; die Grenze liegt bei 1 W, wenn außer der Reaktivierungsfunktion und gegebenenfalls einer Anzeige über die Stellung im Stand-by keine weitere Funktion (Uhr, Regelung) mehr erfüllt wird. Ab Anfang 2013 sinken diese Grenzwerte auf 1 respektive 0,5 Watt [EuP 2009]. Selbstlernende Vorschaltgeräte können verbrauchsreduzierend wirken, indem sie iterativ speichern, zu welchen Zeiten üblicherweise intensive Nutzung, wann seltene Nutzung erfolgt. Entsprechend werden die hiermit geschalteten Geräte in Ruhezustand oder Stand-by gesetzt. Solche Vorschaltgeräte gibt es z.B. für Kopierer, aber auch für Kaffeemaschinen. Es gibt auch Modelle, die mit Bewegungssensoren ausgestattet sind und die Geräte einschalten, sobald sich jemand nähert [emt CH], [Power Safer], [Ecoman].

Stromsparkonzept Sektor Büro – Seite 24

Tab. 13	 Vergleich des Strombedarfs von Geräten der Informationstechnik [Herstellerangaben; Stiftung Warentest]

Durchschnittlicher Strombedarf (Watt)
Gerät		 Standard-PC (normal)	 Spiele PC- bzw. PC mit hoher Anforderung	 Notebook (normal)	 Notebook (für Spiele)	 Röhrenmonitor 21 Zoll	 TFT-Display (beste Geräte)	 Laserdrucker (Stand-by)	 Laserdrucker (Druck)	 Tintenstrahldrucker (Stand-By)	 Tintenstrahldrucker (Druck)	 DSL-Router	 niedrig	 50 	 150	 10 	 30 	 70 	 22 	 2	 250 	 1	 15 	 4	 hoch 150 500 50 100 120 60 20 400 20 80 7

8.3	 Kennwerte Informations- und Kommunikationstechnik Für Geräte der Unterhaltungselektronik gilt wie für die Informations- und Kommunikationstechnik hinsichtlich des Leistungsbezugs in Stand-by-Stellung die EU-weit geltende EuP-Richtlinie5 für Geräte, die ab 2010 produziert werden.

Tab. 14	 Anforderungen an die Leistung von Geräten der Unterhaltungselektronik nach EuP-Richtlinie

Leistung im Stand-by nach EU-Richlinie
für Geräte mit Anzeigefunktion, z. B. Zeit 2 Watt 1 Watt für Geräte ohne weitere Funktion 1 Watt 0,5 Watt Frist zur Einführung derzeit geltend ab 2013

9		

Sonstige Geräte

Im Bürosektor werden in Stockwerks- oder Abteilungsküchen häufig übliche Haushaltsgroßgeräte genutzt. Hier gelten dieselben Aussagen wie für die Haushalte:
	 Prüfen, inwieweit die Anforderung notwendig ist. 	 Geräte nur in einer der Nutzung entsprechenden Größe wählen (Kühlschränke, Spülmaschinen). 	 Sparsame Geräte wählen, dazu beispielsweise die Datenbanken über www.spargeraete.de oder

	

www.ecotopten.de zu Rate ziehen.
	 Nutzungsregeln für die MitarbeiterInnen erstellen, an den Geräten aushängen.

Stromsparkonzept Sektor Büro – Seite 25
5

Festlegung von Anforderungen an die umweltgerechte Gestaltung energiebetriebener Produkte (EuP – Energy using Products)

10		

„Best Practice“-Beispiel

Bürogebäude nach Passivhauskonzept – Energon in Ulm, Liese-Meitner-Straße 14

Quelle: BINE projektinfo 05/06, BINE themeninfo I/2007

Beschreibung	 	 Gebäudeenergiekonzept	 Sommerlicher Wärmeschutz	 	 Wärmeversorgung	 	 	 Belichtung/Beleuchtung	 	 	 Lüftung	 	 	 Kühlung	 	 Energiekennwerte	 	

Fünfgeschossiges Bürogebäude für bis zu 420 Personen, dreieckiger Grundriss, Atrium innerhalb der thermischen Hülle mit Überkopfverglasung, Bj. 2006

Zweigeteilte, lichtlenkende Außenjalousien, semitransparente Sonnenschutz-Folienrollos zwischen Doppelverglasung im Atrium Erdwärme mit Sole-Wasser-Wärmepumpe, Betonkerntemperierung/ gebäudeinterne Abwärme/Fernwärme Fernwärme aus KWK (40 Prozent Biomasse) Tageslichtnutzung über Fenster und Atrium Beleuchtung: elektronisch geregelte T5-Leuchtstoff-Lampen Beleuchtungsregelung: tageslicht- und präsenzabhängig zentrale Zu-/Abluftanlage mit WRG (65 Prozent) über Kreislaufverbundsystem/ Temperierung der Zuluft durch Kreislaufverbundsystem, Erdwärmetauscher, Erdwärmesonden, Fernwärme/Fensterlüftung BKT-System, Kompressionskälteaggregate für EDV-Zentrale und Lebensmittelkühlräume Heizung, Lüftung, Kälte, Licht 2005: 46,8 kWh/m2a, davon Strom: 23,4 kWh/m2a, Wärme: 23,4 kWh/m2a

Primärenergiebedarf Gesamt	 81 kWh/(m2a) Literatur	 www.enob.info und www.bine.info BINE projektinfo 05/2006

Stromsparkonzept Sektor Büro – Seite 26

11		

Übersicht Kennwerte
Umwälzpumpen
10	 8	 20	 50	 23	 36	 100	 28	 39	 500 44 55

	 Elektrische Leistungsaufnahme der Pumpe (Watt)	 	 Wirkungsgrad Grenzwert (%)	 	 Wirkungsgrad Zielwert (%)	

Lüftung und Kühlung Spezifische elektrische Ventilatorleistung
Ventilatorleistung nach Kategorie SFP 2

Wärmebereitstellungsgrad bei Anlagen mit Wärmeübertrager
75% oder besser Die Energiekonzeption Heidelberg 2010 fordert 80%.

Kältegeräte
Arbeitszahl 3,5 und besser

Beleuchtung Maximal installierte Lichtleistung
8 bis 12 W/m²

Mindest-Lichtausbeute
60 Lumen pro Watt

Leuchtenwirkungsgrad
80%

Informations- und Kommunikationstechnik Leistung im Stand-by nach EU-Richlinie
für Geräte mit Anzeigefunktion, z. B. Zeit 2 Watt 1 Watt für Geräte ohne weitere Funktion 1 Watt 0,5 Watt Frist zur Einführung derzeit geltend ab 2013

Stromsparkonzept Sektor Büro – Seite 27

12			 Zusammenfassung und Empfehlungen
Schlanke Gebäudekonzepte setzen auf energieeffiziente und nachhaltige Systemlösungen, die sich durch ein geringes Maß an Gebäudetechnik und niedrige Betriebskosten für Heizung, Kühlung, Lüftung, Beleuchtung und Wartung auszeichnen. Auch bei Veränderung der Randbedingungen können sie den thermischen, hygienischen und visuellen Raumkomfort sicherstellen [BINE I/2007].

Allgemeinstrom
Die Liste von Verbrauchern im Bereich Allgemeinstrom - also von Strom, dessen Verbrauch auf die Nutzer bzw. Mieter eines Gebäudes aufgeteilt wird - ist beträchtlich und variiert je nach Gebäudenutzung (z.B. Wohn-, Büro-, Gewerbenutzung) stark. Einsparungen ergeben sich vor allem 		 der Verwendung von effizienten Netzteilen mit niedrigen Stand-by-Verlusten, z.B. für Klingeltrafos, in 		 Brandmeldeanlagen, Antennenverstärker …, 		 durch das in Kraft-Treten der EuP-Richtlinie zur Begrenzung von Stand-by-Verlusten, 		 durch eine knappe, jeweils der Anwendung angepasste Dimensionierung von Allgemeinbeleuchtung in 		 Kombination mit Bewegungsmeldern und/oder Zeitschaltuhren 		 Details siehe das Querschnittskapitel zu Beleuchtung), (zu 		 soweit nicht unter Betriebskosten Heizung erfasst: durch Umwälzpumpen der Labelklasse A 		 Details siehe das Querschnittskapitel Pumpen), (zu 		 die jeweilige Anwendung optimierte intelligente Regeltechnik, für 		 durch Planungen, die ohne elektrische Begleitheizungen zum Frostschutz von Wasserleitungen oder 		 Abwasserrohren auskommen, 		 durch Planungen, die den Verzicht auf Flächenheizungen im Außenbereich ermöglichen, z.B. bei Tiefgaragen.

Aufzüge
Das Einsparpotenzial bei Aufzügen hängt sehr stark vom Aufzugstyp (technische Ausstattung) und der Nutzung (Gebäudenutzung und -größe) ab. Eine Optimierung des Aufzugsbetriebs kann durch die folgenden Maßnahmen erreicht werden. 		 Wahl eines Aufzugs mit an die Anforderung angepasster Leistung, 		 Aufzugtyp mit Energieeffizienzklasse A (oder mindestens B) wählen, 		 Stand-by-Stromverbrauch gering halten durch Abschaltung des Kabinenlichts und des Displays, durch 		 effiziente Spannungsversorgung (Schaltnetzteile) und durch die Wahl eines Modells, das keine Energie zum 		 Geschlossenhalten der Kabinentür benötigt, 		 Verwendung von LED-Lampen, 		 Wahl einer entsprechend der Gebäudenutzung vertretbar niedrigen Geschwindigkeit, da höhere Beschleunigung 		 größere Motoren verlangt, die aufgrund großer Dimensionierung höhere Verlustanteile aufweisen,

Stromsparkonzept Sektor Büro – Seite 28

		 größeren Objekten mit vielen Aufzugfahrten sollte geprüft werden, ob ein rückspeisefähiger Umrichter zur in 		 Energierückgewinnung (Rekuperation) eine wirtschaftliche Investition darstellt, 		 Optimierung des Gegengewichts entsprechend realistischer Nutzungsannahmen, 		 Aufzuggruppen (in größeren Gebäuden) Abschalten einzelner Aufzüge in Zeiten geringer Nutzung. bei

Umwälzpumpen
Umwälzpumpen sind im Einsatz als Heizungsumwälzpumpen, als Trinkwasser-Zirkulationspumpen, als Umwälzpumpen im Solarkreislauf, in Systemen mit Erdwärmekollektoren sowie in Klimaanlagen. Ihr Einfluss auf den Stromverbrauch bleibt in der Regel unbeachtet. Dabei ist neben der Effizienz der Pumpe auch die Auslegung des Wärmeverteilnetzes für den Betriebsstromverbrauch verantwortlich, weshalb für neue Netze ein hydraulischer Abgleich vorgeschrieben ist (DIN 4701-10, VOB/C DIN 18380, EnEV). Durch drehzahlgeregelte Pumpen mit Permanentmagnetmotor sind hohe Einsparpotenziale realisierbar. 		 Hocheffiziente Pumpen der Energieeffizienzklasse A sollten installiert werden. 		 Besonders effizient arbeiten differenzdruckgeregelte Pumpen. Ihr Einsatz sollte geprüft werden. 		 Eine Dokumentation des hydraulischen Abgleichs sollte angefordert werden. 		 Regelung von Pumpen sollte sich am Bedarf orientieren (bedarfsgerechte Regelung). Im Zusammenhang Die 		 Betonkerntemperierung hat sich eine Taktung der Umwälzpumpen bewährt. mit 		 sehr gut wärmegedämmten Gebäuden kann die Verteilung des verbleibenden geringen Restwärmebedarfs ggf. Bei 		 über die Lüftungsanlage erfolgen, in diesen Fällen ist u. U. kein herkömmliches Heizsystem mehr erforderlich. In 		 diesen Fällen sind analoge Effizienzanforderungen an die Lüftungssysteme zu richten (siehe eigenes Kapitel). 		 Auch für Sonnenkollektor- sowie für Klimaanlagen und Erdwärmetauscher sollten effiziente Pumpen eingesetzt 		 werden.

Stromsparkonzept Sektor Büro – Seite 29

Lüftung und Klimatisierung
Lüftungsanlagen mit Wärmerückgewinnung sind integraler Bestandteil von Passivhäusern, um hygienische Raumluftverhältnisse bei minimalen Lüftungswärmeverlusten zu sichern. Um den projektierten Stromverbrauch zu minimieren, sind zunächst die planerischen Voraussetzungen zu erfüllen. 		 Sorgfältige Dimensionierung durch Abklärung des genauen Bedarfs, Optimierung der Luftwechselraten, 		 Minimierung der Druckverluste in Lüftungskanälen und Anlagenkomponenten, 		 Wahl eines auf die Anlage abgestimmten Ventilators mit gutem Wirkungsgrad und geringem Stromverbrauch 		 0,21 W/(m3/h) pro Ventilator), (≤ 		 sorgfältige Filterdimensionierung und regelmäßige Filterwartung/-austausch 		 Installation einer bedarfsangepassten Ventilator- und Raumvolumenstromregelung, 		 Prüfung der Effizienzverbesserung durch die Nutzung regenerativer Energiequellen 		 (z.B. Erdwärmetauscher, Solarwärme), 		 Einsatz eines Lüftungssystems mit Wärmerückgewinnung mit hohem Rückgewinnungsgrad (≥ 75 Prozent) 		 dichter Gebäudehülle, bei 		 regelmäßige Wartung und regelmäßiger Filterwechsel, 		 Nutzereinweisung, 		 Bereitstellung von Dokumentationsunterlagen.

Kühlung und Befeuchtung sollten auf Sondernutzungszonen beschränkt bleiben. Vor der Installation von Kältegeräten müssen zunächst Maßnahmen zur Minimierung des Kältebedarfs getroffen werden. Hierfür sind bereits in einer frühen Planungsphase die Voraussetzungen zu schaffen. 		 Verwirklichung eines integralen Gesamtkonzepts schafft die Voraussetzungen für einen möglichen Verzicht Die 		 Kühlung. auf 		 einem funktionierenden Gesamtkonzept mit notwendiger Kühlung gehören auch organisatorische MaßnahZu 		 men wie die Orientierung von zu kühlenden Räumen gegen Norden und die Kopplung des Kühlbetriebs an einen 		 aktiven Sonnenschutz und geschlossene Fenster. 		 Temperatur in Serverräumen sollte nicht tiefer gewählt werden als erforderlich, 26°C ist in aller Regel Die 		 vertretbar/solare Einträge sind zu vermeiden/u.U. Rackkühlung. 		 Kühlung und Befeuchtung muss die Systemauswahl vom Planer aufgrund des Nutzungsprofils und der Für 		 Randbedingungen begründet werden. 		 Solare und andere regenerative Kühlsysteme (z.B. Absorptionskälte aus Fernwärme) sollten stets untersucht 		 werden. 		 Anlagenaufwandszahl und der flächenspezifische Energieeinsatz sollten für alle Planungen nachgewiesen Die 		 werden. 		 einer Notwendigkeit von RLT-Klimaanlagen sollte die Auslegung auf Mindestaußenluftraten nach [DIN EN Bei 		 13779] und [ASR 6] erfolgen. Falls die Kühllast höher ist, als mit der Mindestluftrate abgeführt werden kann, 		 sollte die Klimatisierung vorrangig mit wasserführenden Kühlsystemen ergänzt werden. 		 Regelmäßige (jährliche) Messungen, besser noch kontinuierliche Messungen, zur Optimierung des Anlagen		 betriebs sollten vorgesehen werden. 		 Betrieb der aktiven Kühlung sollte immer in Kombination mit freier Kühlung erfolgen. Der

Stromsparkonzept Sektor Büro – Seite 30

Belichtung und Beleuchtung
Für die Beleuchtung eines Bürogebäudes spielt die optimale Tageslichtnutzung eine große Rolle. Dadurch werden nicht nur erhöhte Stromkosten für Beleuchtung sondern auch unnötige thermische Lasten vermieden. Eine sehr umfangreiche Zusammenstellung von Einsparmöglichkeiten an der Beleuchtung wird in der nachstehenden Tabelle gezeigt. Bei der erwähnten Öko-Aus-Funktion kann z.B. ein zeitgesteuertes Treppenhauslicht durch ein zweites Drücken des Lichtschalters vorzeitig wieder ausgeschaltet werden. Der Wirkungsgrad von Leuchten sollte bei 80 Prozent liegen. Leuchten sollten turnusmäßig gereinigt werden, da der Leuchtenwirkungsgrad durch Verschmutzung kontinuierlich abnimmt.
Tab. 15		 Einsparmöglichkeiten beim Lichtstromverbrauch; nach [Allgemeinstrom 09]
Allgemein -	 -	 	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 Leuchtmittel mit sehr guter Lichtausbeute (oberhalb 60 Lumen pro Watt), insbesondere bei 	anger Brenndauer l Leuchtmittel mit langer Standzeit (LED), speziell an schwer erreichbaren Orten und dort, wo Personalkosten beim Austausch entstehen Schaltfeste Leuchtmittel Leuchten mit guter Lichtlenkung Einsatz von EVGs optimierte Zeitautomatik Einsatz von Helligkeitssensoren und Bewegungsmeldern helle Gestaltung von Oberflächen größtmögliche Ausnutzung des Tageslichts (in Abstimmung mit thermischen Erfordernissen) Energieeffiziente Leuchtmittel mit hoher Schaltfestigkeit und schneller Helligkeit Verzicht auf Orientierungsbeleuchtung Zeitautomatik mit möglichst kurzer Brenndauer Öko-Aus-Funktion: Einbezug des Bewohners in Stromsparprozess Bei vielen Wohneinheiten: Helligkeitssensor und Bewegungsmelder, ggf. Etagen- bzw. Zonenverbund

Treppenhaus und Flure

Wenig frequentierte Räume (z.B. Heizungsraum, Hausanschussraum …) Viel frequentierte Räume (z.B. Fahrradkeller, Waschmaschinenraum …) Gemeinschaftsräume z. B. Festräume Eingänge

-	 Individuelle Ein-/Ausschaltung -	 ggf. Zeitautomatik -	 Zeitautomatik -	 Öko-Aus-Funktion: Einbezug des Nutzers in Stromsparprozess -	 ggf. Bewegungsmelder -	 Individuelle Ein-/Ausschaltung -	 ggf. Lichtszenen- gesteuerte Beleuchtung als Kombination von Allgemein- und Stimmungsbeleuchtung -	 Zeitautomatik -	 ggf. Bewegungsmelder -	 alternativ: Dauerhaft gedimmte Beleuchtung, volle Leuchtkraft bei Bewegungsvermerk System 1: -	 Tageslichtgesteuerte dauerhafte Orientierungsbeleuchtung -	 evtl. Einsatz solargespeister Beleuchtung System 2: -	 Tageslichtgesteuerte Beleuchtung, Bewegungsmelder System 3: -	 Tageslichtgesteuerte, dauerhafte gedimmte Beleuchtung, volle Leuchtkraft bei Bewegungsvermerk System 4: -	 Bewegungsbegleitende Beleuchtung (Zonenverbund) -	 Einsatz energieeffizienter Leuchtmittel (z. B. LED`s) -	 Tageslichtgesteuert, mehrere Stunden Nacht-Aus -	 Einsatz energieeffizienter Leuchtmittel -	 evtl. Betrieb auf geminderter Leistung -	 Bewegungs- und Zeitautomatik (Carports/Garagen) -	 Zeitautomatik (kurze Beleuchtungszeit) -	 ggf. Bewegungsmelder -	 evtl. energieautarkes System mit Solarzelle -	 Einsatz von besonders effizienten Leuchtmitteln mit langer Lebensdauer

Wege

Architektonische Akzentbeleuchtung Parkplätze

Müllsammelstelle

Durchgänge

Stromsparkonzept Sektor Büro – Seite 31

Informations- und Kommunikationstechnik (IKT)
Das vorhandene Einsparpotenzial im Bereich der IKT liegt vor allem in der Geräteanschaffung und im Nutzerverhalten, worauf sich die folgenden Empfehlungen beziehen. 		 Temperatur in Serverräumen nicht tiefer wählen als erforderlich, 26°C ist in aller Regel vertretbar, 		 solare Einträge vermeiden, 		 effiziente Komponenten verwenden, 		 Server gut ausnutzen, ehe weitere Kapazität installiert wird (Virtualisierung), 		 Abluftführung optimieren, 		 gegebenenfalls mit Wasser kühlen, auch direkt am Geräte-Rack, 		 gegebenenfalls Abwärme nutzen (Brauchwarmwassererwärmung über Wärmetauscher), 		 sollten Informationen über Höhe und Kosten der Stand-by Verluste zur Verfügung gestellt werden. Es 		 Einkauf von Geräten sollte kritisch erfolgen: wird das gewünschte Gerät tatsächlich benötigt; Der 		 entspricht die technische Leistungsfähigkeit den gegebenen Anforderungen? 		 Neuanschaffungen sollten entsprechende Datenbanken mit Werten sparsamer Geräte herangezogen werden, Bei 		 beispielsweise www.topten.ch, www.ecotopten.de und www.stromeffizienz.de/dienstleister		 oeffentliche-hand.html. 		 sollten nur Geräte mit effizienten Netzteilen gemäß neuer EU-Richtlinie ausgewählt werden: Es 		 Stand-by-Verbrauch weniger als 1 respektive 0,5 Watt. 		 NutzerInnen sollten auf auf ihren Einfluss auf den Geräteverbrauch aufmerksam gemacht werden, 		 z.B. mit Hinweisschildern. 		 Schaltbare Steckdosen/Steckerleisten verwenden. 		 Gemeinsam genutzte Geräte über Zeitschaltuhr oder über selbstlernende Vorschaltgeräte ausschalten.

Sonstige Geräte
Für Haushaltsgroßgeräte in Teeküchen von Bürogebäuden können die selben Empfehlungen ausgesprochen werden wie für den Sektor Haushalte. Zusätzliche Energiespartipps für Haushaltsgeräte im Büro zeigt die folgende Abbildung.
Abb. 7		„Checkliste Haushaltsgeräte im Büro – das können Sie tun“
Stellen Sie Kühlgeräte an einen möglichst kühlen Platz, denn der Stromverbrauch steigt um ca. drei Prozent bei einem Anstieg der Umgebungstemperatur von gerade einmal 1°C. Stellen Sie die Temperatur des Kühlschranks auf 7°C ein. Die optimale Temperatur eines eventuell vorhandenen Gefriergerätes oder Gefrierfachs beträgt -18°C. Stellen Sie keine heißen Lebensmittel oder Getränke in den Kühlschrank. Nutzen Sie das Energiesparprogramm des Geschirrspülers und stellen Sie nur voll beladene Geschirrspüler an. Die Programmfunktion „1/2“ reduziert den Stromverbrauch nicht um die Hälfte. Erhitzen Sie kleine Mengen Wasser am besten im Wasserkocher. Am meisten spart, wer nur so viel Wasser in den Kocher füllt, wie tatsächlich benötigt wird. Halten Sie heiße Getränke in Thermoskannen warm, statt auf der Warmhalteplatte der Kaffeemaschine. Kaffeeautomaten sollten über eine automatische Abschaltfunktion verfügen, die das Gerät nach einer einstellbaren Zeit in den Stand-by-Zustand versetzt. Nutzen Sie die Mikrowelle für das Aufwärmen kleiner Speisen. Sie benötigt hierzu wesentlich weniger Strom als ein Elektroherd.

Stromsparkonzept Sektor Büro – Seite 32

Literaturverzeichnis

[26°C]	 [Allgemeinstrom 09]	 	 [ASR 6]	 	 [Bay LA Umwelt 2008]	 	 [BINE 13/09]	 [BINE 16/09]	 [BINE 13/07]	 [BINE I/03]	 [BINE I/2007]	 [BoN]	 [DIN 4701-10]	 	 [DIN EN 12464-1]	 [DIN EN 13779]	 	 [EIN EN ISO 7730]	 	 [Ecoman]	 [EEG2004]	 	 [Efficient Servers 08]	 	 [Effizienzkriterien HD]	 	 [Energy 2.0 Kompendium 2008]	 	 [Gloor]	 [HB-BEI 07]	 	 [IBM 2008]	 	 	 [Jakob/Jochem]	 	 [LEE 2000]	 	 	 [Lichtklima]	 	 [Nipkow 06]	 	 [no-e Stand-by]	

26°C in EDV-Räumen – eine Temperatur ohne Risiko, Bundesamt für Energie, Bern, energieSchweiz 2004 Allgemeinstrom in Wohngebäuden, Dr.-Ing. Klaus-Dieter Clausnitzer, Bremer Energieinstitut BEI, Febr. 2009 Arbeitsstättenrichtlinie Lüftung ArbStätt 5.006 Version 05/2002 zu §6 Raumtemperaturen, Vorschriftensammlung der Staatlichen Gewerbeaufsicht Baden-Württemberg 1, Ausgabe: Mai 2001 Effiziente Energienutzung in Bürogebäuden – Planungsleitfaden, Bayerisches Landesamt für Umwelt, 2008 Bürogebäude dezentral lüften und klimatisieren, BINE Informationsdienst, Projektinfo 13/2009 Verwaltungsgebäude als energieeffizientes Ensemble, BINE Informationsdienst, Projektinfo 16/2009 Effizientes Bürogebäude mit flexiblem Raumkonzept, Projektinfo 13/2007 BINE Themeninfo I/2003 Passive Kühlung mit Nachtlüfung, BINE Informationsdienst 2003 BINE Themeninfo I/2007 Thermoaktive Bauteilsysteme, BINE Informationsdienst 2007 Betrieb ohne Nutzen – BoN im Dienstleistungssektor, Brunner et al, BfE Bern, 2009 Energetische Bewertung von heiz- und raumlufttechnischen Anlagen – Teil 10: Heizung, Trinkwassererwärmung, Lüftung Licht und Beleuchtung – Teil 1: Beleuchtung von Arbeitsstätten in Innenräumen Lüftung von Nichtwohngebäuden - Allgemeine Grundlagen und Anforderungen für Lüftungs- und Klimaanlagen und Raumkühlsysteme; Deutsche Fassung EN 13779:2007 Ergonomie der thermischen Umgebung – Analytische Bestimmung und Interpretation der thermischen Behaglichkeit http://www.ecoman.org/ Gesetz zur Neuregelung des Rechts der Erneuerbaren Energien im Strombereich (Erneuerbare Energien Gesetz vom 21. Juli 2004). Bundesgesetzblatt 2004 Teil1 Nr. 40. Energy efficient Servers in Europe, Bernd Schäppi, Österreichische Energieagentur und andere; Intelligent Energy Europe 2008 Effizienzkriterien für kommunale Gebäude in Heidelberg, Stadt Heidelberg, Amt für Umweltschutz, Energie und Gesundheitsförderung, 2003 Energieeffizienz im Rechenzentrum – Hardware und Infrastruktur optimieren -, in Energy 2.0 Kompendium 2008 erschienen unter www.Energy20.net GLOOR ENGINEERING, CH-7434 SUFERS in www.energie.ch Energieeinsparung in Bildungseinrichtungen durch Gebäudebustechnik, Hochschule Bremen, Bremer Energie-Konsens 2007 IBM Global Business services, Tickt der Norden grün, Klimaschutz, Energieeffizienz und Nachhaltigkeit im Mittelstand, Befragusng von mittelständischen Unternehmen in Norddeutschland im März/April 2008 http://www-05.ibm.com/de/ibm/green/pdf/IBM_Mittelstandsstudie_Gruener_Norden.pdf Energieeffizienz, Kosten und Komfort in Gebäuden des Dienstleistungssektors, M. Jakob, E. Jochem, CEPE Zürich 2006 Elektrische Energie im Hochbau: Leitfaden Elektrische Energie. Hrsg. Hessisches Ministerium für Umwelt, Landwirtschaft und Forsten; 2. überarbeitete Fassung. Wiesbaden: 2000. Gutes Lichtklima, Ratgeber zur energieeffizienten Beleuchtungsmodernisierung, Hessisches Ministerium für Wirtschaft, Verkehr und Landesentwicklung, Wiesbaden 2005 Energieverbrauch und Einsparpotenziale bei Aufzügen, Jürg Nipkow, ARENA Zürich, in Bulletin SEV/VSE 9/06 http://www.no-e.de/html/unglaublich.html

Stromsparkonzept Sektor Büro – Seite 33

[PC-Arbeitplatz]	 [PHI 31]	 	 [PHI Reglement]	 	 [PHI Zertifizierung]	 	 [Phoenix 2004]	 	 [RLT 01]	 	 [UBA 09]	

Stromsparen am PC-Arbeitsplatz, energieSchweiz 2007 Protokollband Nr. 31, Arbeitskreis kostengünstige Passivhäuser Phase III, Energieeffiziente Raumkühlung, Passivhausinstitut Juli 2005 Prüfreglement von Lüftungsgeräten, zentral, für die Zertifizierung als „Passivhaus geeignete Komponente“; Stand 24.9.2009, Passivhausinstitut, Darmstadt Zertifizierung als „Qualitätsgeprüftes Passivhaus“ – Kriterien für Passivhäuser mit Wohnnutzung bzw. für Passivhäuser mit Nicht-Wohnnutzung, Stand 6.8.2009, Passivhausinstitut, Darmstadt Leitfaden Energieeffizientes Bauen PHOENIX West-Teil 3, Leg, Wirtschafts- und Beschäftigungsförderung Dortmund, 2004 RLT-Richtlinie 01 Allgemeine Anforderungen an Raumlufttechnische Geräte, Herstellerverband Raumlufttechnische Geräte e.v., Januar 2009 Beleuchtungstechnik mit geringerer Umweltbelastung, Umweltbundesamt 2009

Stromsparkonzept Sektor Büro – Seite 34

Herausgeber:	 	 	 	 	 Ansprechpartner:	 	 	 	 	 	

Stadt Heidelberg Amt für Umweltschutz, Gewerbeaufsicht und Energie Verwaltungsgebäude Prinz Carl Kornmarkt 1 69117 Heidelberg Alexander Krohn Tel.: 06221 58-18161 alexander.krohn@heidelberg.de Robert Persch Tel.: 06221 58-45321 robert.persch@heidelberg.de

Bildquellen: fotolia, ebök
        
Top of page

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.